
IOP PUBLISHING METROLOGIA

Metrologia 45 (2008) S12–S22 doi:10.1088/0026-1394/45/6/S03

Improvements to the NIST network time
protocol servers
Judah Levine

Time and Frequency Division, National Institute of Standards and Technology, Boulder, CO 80305, USA

E-mail: Jlevine@boulder.nist.gov

Received 25 June 2008
Published 5 December 2008
Online at stacks.iop.org/Met/45/S12

Abstract
The National Institute of Standards and Technology (NIST) operates 22 network time servers
at various locations. These servers respond to requests for time in a number of different
formats and provide time stamps that are directly traceable to the NIST atomic clock
ensemble in Boulder. The link between the servers at locations outside of the NIST Boulder
Laboratories and the atomic clock ensemble is provided by the Automated Computer Time
Service (ACTS) system, which has a direct connection to the clock ensemble and which
transmits time information over dial-up telephone lines with a two-way protocol to measure
the transmission delay. I will discuss improvements to the ACTS servers and to the time
servers themselves. These improvements have resulted in an improvement of almost an order
of magnitude in the performance of the system.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The National Institute of Standards and Technology (NIST)
currently operates 22 public network time servers that are
located at many different sites in the United States [1]. The
servers have a direct, hardwired connection to the NIST atomic
clock ensemble in Boulder, Colorado, and therefore operate at
stratum 1. The connection to the clock ensemble is realized by
means of the Automated Computer Time Service (ACTS). The
hardware that supports the ACTS system is directly connected
to the atomic clock ensemble in Boulder. The ACTS system
transmits time over voice-grade dial-up telephone connections
and standard modems. Both the ACTS system that provides
the time signals and the network servers that receive them
have been improved, and I will discuss these improvements
in the following text. The improvements have resulted in an
increase in the timing accuracy and time stability of the servers.
This improvement has been used to increase the accuracy of
the service with the same calibration interval and has resulted
in an improvement of almost an order of magnitude in the
performance of the servers. It is also possible [2] to design
the synchronization algorithm to make an explicit trade-off
between the accuracy of the process and the interval between
calibrations that is required to realize this accuracy.

2. General description of the services

The ACTS service was first offered in 1988 and was widely
used at that time to set the time on both personal computers
and larger central systems. The service was based on dial-up
connections over the public telephone network. The time
signals were transmitted using standard modems, and no
special hardware was required. The usage of the service
declined somewhat in the following years as connections to
the Internet became more generally available. More recently,
the service has seen a renaissance among general users since it
is not affected by many of the problems and malicious activities
that have become more common on the public Internet.

When the NIST started offering Internet-based time
services in the early 1990s, the ACTS service was a natural
choice for synchronizing the Internet time servers that were not
located at the NIST facility, since the ACTS system provided
secure connections whose accuracy was consistent with the
requirements of an Internet service and whose messages were
directly traceable to the atomic clock ensemble maintained at
NIST in Boulder. Although the ACTS service continues to
be used by the general public for many different applications,
one of its most demanding uses is to synchronize the systems
used to support the NIST network time service. Recent
improvements in the network time servers have mandated
corresponding improvements to the ACTS system. This report
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Figure 1. A block diagram showing how UTC(NIST) is transmitted
to a typical Internet time server using the ACTS system as the
transport method. The connections indicated by ‘c’ are hardwired
connections that transmit signals at 1 Hz and 5 MHz from the NIST
clock ensemble to the ACTS system. The connections indicated by
‘s’ are data connections between serial ports communicating using
the RS-232 signal format at a constant speed of 9600 bits s−1. The
telephone connection is realized using standard voice-grade dial-up
lines.

describes both of these improvements and the tests that I
performed to evaluate the performance of the system.

Figure 1 shows the general configuration of the improved
ACTS system, which transmits the time signals, and the
Internet time server which receives them and uses them to
discipline its internal clock. In this paper I will focus on the
performance of the combination, recognizing that the ACTS
service is also used for other purposes.

3. The ACTS protocol

The ACTS protocol [3] is based on the usual two-way
algorithm—the time it takes a message to travel from the server
to the client is modelled as one-half of the measured round-trip
delay. This estimate of the one-way delay is used to correct
the time stamp. As with all two-way methods, the accuracy
depends on the symmetry of the path delay and not on its
magnitude [4].

In this paper I will describe improvements to the hardware
that is used to support the ACTS service at NIST. The two
changes that have had the greatest impact on the quality of
the time service are that (1) a more sophisticated and more
accurate hardware-based method is now used to measure the
round-trip path delay and (2) the time at which the on-time
marker is transmitted is controlled more accurately by the new
system. This tighter control has improved both the accuracy
and the stability of the ACTS system. I will describe both
of these changes in greater detail below. The protocol and
the message format have not been changed, however, so that
users do not see these improvements directly, and software that
received time messages from the original servers can use the
newer ones without modification. The following discussion
summarizes the operation of the ACTS system.

Once a telephone connection has been established
between the client system whose clock is being calibrated and
the ACTS server in Boulder, the ACTS server begins sending
time messages once per second. (The client system does not

have to solicit these messages—the server starts sending them
automatically when it detects a new connection.) The message
contains several fields in ASCII text, including the Coordinated
Universal Time (UTC) time as realized by the NIST time
scale, advance notice for leap seconds, advance notice for the
transitions to and from daylight saving time (based on the US
model) and the advance time in milliseconds when the on-time
marker was transmitted relative to the time tag in the same
message. As we will discuss in the following text, this advance
is intended to correct for the travel time of the message from
the server to the client. All of the calculations needed to
support the two-way algorithm are performed by the server.
(This is in contrast to other protocols, such as the Network
Time Protocol, where the calculations are done by the client or
two-way satellite time transfer, where both stations contribute
to the calculation.)

The message ends with an on-time marker, which is
initially set to the ASCII character ‘∗’. The protocol is
designed so that the epoch specified in the message has arrived
when the stop bit of the on-time marker is received by the
client system, and the server advances the transmission time
of this character by the estimated one-way travel time across the
network so as to realize this condition. The server uses a default
advance of 145 ms, and this default advance will continue to be
used if the user does not participate in the two-way algorithm
by echoing the on-time marker back to the server as discussed
in the following text. The server does not consider the lack of
an echo to be an error but rather an indication that the client is
prepared to accept the default advance as sufficiently accurate
for its needs.

To ensure that the echo will be received before the
maximum time limit is reached (see below) even when the true
round-trip delay is very long, the default advance is set near
its maximum value. (This can happen with some modems and
noisy telephone lines, which require low-speed connections.)
In more typical cases, the actual one-way delay is closer to
75 ms, so that the on-time marker will arrive early by up to
70 ms of the correct time when the default advance is used.
Since the modems at both the server and the client make
significant contributions to the path delay, the variation in the
delay from one telephone connection to the next one is often
less than 1 ms peak to peak even when the default advance
is used, so that an application that uses the ACTS service for
a frequency calibration may see no advantage in echoing the
on-time marker back to the server.

The stability of the delay from one call to the next is
illustrated in figure 2, which shows the delay measured by the
ACTS server on three consecutive calls spaced a few minutes
apart. In this test the remote modem calls the ACTS server over
a standard dial-up telephone line and is switched into loopback
mode as soon as the modems complete the connection by
connecting a jumper between the received data output and the
transmitted data input. The configuration is shown in figure 3,
with the wire marked ‘LB’ connected. (See the figure caption
for additional details of the test configuration.) Although the
initial delay transients are different, the measured delays in
each call from the fifth transmission to the end of the call have
mean values of 81.8 ms, 81.9 ms and 81.75 ms. For all three
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Figure 2. The one-way delay over a dial-up telephone connection measured by the ACTS server between the server and a remote modem.
The remote modem is used to call the ACTS server. As soon as the call is established, the remote modem is connected in loopback mode by
connecting the received data output line to the transmitted data input line at the RS-232 connector as shown in figure 3 with the ‘LB’ wire
connected.

Figure 3. The hardware configuration used to test the ACTS
servers. The remote modem dials the ACTS server to establish the
connection. The output of the modem is connected to a simple
circuit that monitors the received characters for an on-time marker
(OTM) character. When the circuit detects either of these characters
(‘∗’ or ‘#’), it echoes it back to the server and emits a pulse on the
output line. The time of the pulse is compared with a local reference
by the use of a standard time interval counter (TIC). The local
reference clock is derived from UTC(NIST), so that the data are a
measure of both accuracy and stability. The dotted arrow marked
‘LB’ shows the loopback configuration discussed in the text and
used for the data in figure 2. The circuit that monitors the characters
is not connected when the loopback tests are being performed.

calls, the delays can be well characterized as white phase noise.
Figure 4 shows the time deviation (TDEV) for these data,
starting with the fifth point once the delay has become stable.

In order to measure the round-trip path delay, the client
system must echo the on-time marker back to the server as
soon as it is received, and the protocol assumes that the delay
in doing so is small enough to be ignored. If the client simply
echoes the entire message back to the server, the server will
ignore all of the characters in the time message except for the
on-time marker. Therefore, a client system can implement the

protocol by configuring its receiver to be in loopback mode,
which immediately echoes everything that has been received
back to the sender. (This method will work, but it may not
be optimum if the receiving system is very busy1). Since the
point at which the on-time marker is echoed is the effective
reference plane for the two-way measurement algorithm, it is
important that the system accounts for any delay in processing
the time stamp after that reference point, since the algorithm
that measures the path delay will not compensate for it. It
is generally not possible to measure this extra delay, and the
next-best strategy is to make it small enough that it can be
ignored.

When the client system receives the on-time marker and
echoes it back to the ACTS server, it also captures the time
of its own clock. The protocol depends on the fact that this
capture is done following the receipt of the on-time marker
with a delay that is small enough to be ignored. If the server
has accurately modelled the one-way delay, then the on-time
marker arrives at the time specified by the message text, and the
client system simply subtracts the time of its local clock from
the received epoch. No additional processing is required. The
server indicates that it has measured the delay by changing the
on-time marker character from ‘∗’ to ‘#.’ If the server cannot
measure a consistent delay, then the on-time marker does not
change, and this is a signal that the delay measurement is not
being performed accurately and that the default advance is
being used.

The improvements to the network time service have
focused on improving both ends of this two-way exchange

1 If there are any characters in the output buffer, then the on-time marker
will be added to the queue and its transmission can be delayed by a variable
amount until the buffer empties. A better strategy is to minimize the number of
characters echoed so that the output buffer is always empty when the on-time
marker is sent to the output driver for transmission.
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Figure 4. The TDEV of one of the data sets shown in figure 2, starting from the fifth data point after the delay has stabilized and continuing
for the rest of the data.

between the Internet time servers whose clocks are being
synchronized and the ACTS systems that are used for this
purpose.

4. The ACTS time messages

The messages transmitted by the ACTS system provide the
epoch in two independent formats, and a lack of consistency
between these two formats is an indication of a transmission
error. A series of messages are shown in the following text.

National Institute of Standards and Technology

Telephone Time Service, Generator 4B

Enter the question mark character for HELP

D L

MJD YR MO DA HH MM SS ST S UT1 msADV <OTM>

54630 08-06-13 15:46:36 50 0 +.3 145.0 UTC(NIST) *

54630 08-06-13 15:46:37 50 0 +.3 079.7 UTC(NIST) *

54630 08-06-13 15:46:38 50 0 +.3 078.7 UTC(NIST) *

54630 08-06-13 15:46:39 50 0 +.3 080.9 UTC(NIST) *

54630 08-06-13 15:46:40 50 0 +.3 079.3 UTC(NIST) *

54630 08-06-13 15:46:41 50 0 +.3 080.1 UTC(NIST) #

54630 08-06-13 15:46:42 50 0 +.3 080.0 UTC(NIST) #

54630 08-06-13 15:46:43 50 0 +.3 079.8 UTC(NIST) #

54630 08-06-13 15:46:44 50 0 +.3 080.4 UTC(NIST) #

The first parameters give the date in a redundant format. The
presence of the Modified Julian Day (MJD) number serves to
remove the ambiguity in the two-digit year, and the two formats
of the date provide a consistency check on the transmissions.
The remaining data are not used if this consistency check fails.

The remaining data in the message contain the flag for
daylight saving time, DST (where 50 indicates that daylight
saving time is in effect based on the US transition dates),
the advance notice for leap seconds, LS (where a value of 0
indicates that no leap second is pending), the UT1 correction in
units of seconds with a resolution of 0.1 s and the advance used
for the on-time marker corresponding to this message. Note
the initial value of 145 ms, and the convergence to a stable
value after several iterations, after which the on-time marker
changes from ‘∗’ to ‘#’. The details of the format for the
daylight saving time flag have been described previously, and
an explanation is also available in the help message, which
can be received by entering a question mark at any time. The
calculation of the DST value was changed in 2007 to match
the new US transition dates that were effective at that time,
but the definition was not changed. The DST flag is not used
for the Internet time services, since all processing is done in
UTC. The leap second flag is used by the Internet clients to set
the corresponding flag in the transmitted messages. The UT1
correction is not used. The advance value is used for testing
and debugging, but is ignored in normal operations, since it
has been used by the server to calculate the transmission time
of the on-time marker.

The clocks on the time servers have been keeping time
in units of seconds and fractions since 1 January 1970, so
that it is a simple matter to compare the local second with the
received epoch by the use of the MJD alone. If T s

sys is the
seconds portion of the time of the clock on the client when
the on-time marker is received, and if MJD, h, m and s are the
Modified Julian Day number, the hours, minutes and seconds,
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respectively, in the message, then the integral seconds portion
of the time difference (local client − ACTS server) is given by

�ts = T s
sys − 86 400(MJD − 40 587)

− 3600h − 60m − s, (1)

where 40 587 is the MJD corresponding to 1 January 1970.
This calculation is done in integer arithmetic to prevent round-
off or truncation. When the clocks are synchronized, the result
of this calculation is either 0 or −1. The fraction of a second
portion of the time of the client, T

µs
sys, must be added to this

value to give the final time difference. This fraction has units
of microseconds on most systems, so that the time difference
(local clock—ACTS) is given by

�t = 106�ts + T
µs

sts . (2)

This calculation is also done in integer arithmetic and the
calculations are divided into two parts as shown to prevent
loss of significance (or integer overflow) in the intermediate
results.

This is the easy part of the protocol. The hard part
is ensuring that the advance of on-time marker accurately
reflects the path delay and that the client system receives it
and processes the associated time tag with negligible delay.
The following discussion will explain how these requirements
have been addressed.

5. The ACTS servers

The hardware used to support the ACTS servers is divided
into two parts: a modem and a measurement module for each
telephone line that is being used to support the protocol and a
single computer that generates the time code and handles the
housekeeping for a number of telephone lines. In the current
implementation, a single computer handles either four or eight
telephone lines. (The number of serial lines is set by the
hardware used to interface them to the computer, and some
of the older ACTS computers could also support six lines.)

The improvements to the ACTS system are primarily a
result of the separation of the hardware that measures the path
delay and the computer that generates the time codes. These
two functions were combined in a single system in the previous
version.

Using a general-purpose computer as an ACTS server has
the important advantages that the hardware is a standard off-
the-shelf item and the software can be developed and tested
using widely available software tools. This advantage is offset
by the facts that there can be significant jitter in the receipt
of the on-time marker echoed by the remote user and it is
generally impossible to control the time at which a character
is actually transmitted to the remote user by the serial output
device. Both of these problems tend to become more serious
as the load on the system increases, and these problems are
only marginally improved by using a faster system, since the
process is primarily limited by the input/output speed of the
serial connections. These two problems resulted in a noise
floor of the original ACTS system of 1 ms to 2 ms RMS, with
a spectrum that was consistent with white phase noise for

averaging times up to the duration of the telephone connection.
This value was adequate for that time, but it has now become an
important limit in the overall performance of the time service.

The system we describe here has addressed these
limitations by using the general-purpose computer to generate
the time code, since the time code is rather complicated but
changes only every second. The code is also highly redundant
from second to second so that only a small part need be
re-calculated almost all the time. The time-critical aspects
of the protocol are handled by a group of special-purpose
hardware modules that are dedicated to this function. Each of
these modules handles the delay measurement for only a single
telephone line. The construction of these modules is simplified
by the use of cross-compilers that support programming the
integrated circuits using a high-level language.

6. The common computer

The computer is synchronized to UTC by means of 1 Hz pulses
from the atomic clock ensemble. The pulses are interfaced to
the system through one of the interrupt lines on a serial port
that is dedicated to this function. (It is also possible to use 1 Hz
pulses from any other precision timing source, such as a GPS
receiver or a local atomic standard, and this alternative input
can be used if the signal from the clock ensemble becomes
unavailable for any reason.) The current configuration uses the
ring indicator (RI) status line for this purpose, but any other
status line that can be read by the driver can be used. The
interrupt service handler for the serial port has been modified
so that the jitter in processing these pulses is less than 10 µs.
(The resolution of the system clock is 1 µs.) However, the
computer is not used for any precision timing, and this is not
a critical specification. The UTC epochs (that is, the names
to be associated with the 1 Hz ticks) can also be derived from
any source, including a local GPS receiver or a network time
server. The epoch can even be manually set by the operator,
since it need be set only once during a cold-start and need be
accurate only to the nearest second.

I will not discuss the routine housekeeping tasks that are
needed to support the algorithm, and I will concentrate on the
generation and transmission of the on-time markers, which are
the aspects that define the performance of the system. These
housekeeping tasks include monitoring the status of each serial
port to detect new connections and disconnections, monitoring
the duration of a call, providing a visual display of the state of
the system and sending a help message if it is requested by the
remote system.

When the computer receives a 1 Hz tick on the serial port
indicating that a new second has started, it proceeds to generate
the new time code. The epoch in the time code corresponds to
a time that is 1 s in the future, since it will be associated with
an on-time marker that will be transmitted near the end of the
current second and received 1 s later. Most of the parameters
in the time code can change only at the first second of a new
day, and it takes about 450 µs to generate the full new code
at that time. (This new-day time code is actually generated at
23 : 59 : 59 of the previous day as described above. If a positive
leap second is in progress at that point, the system transmits the

S16 Metrologia, 45 (2008) S12–S22



Improvements to the NIST network time protocol servers

correct time code of 23 : 59 : 60 and generates the time code for
the next day during the leap second. The software also supports
negative leap seconds, and the time code for the new day would
be generated at 23 : 59 : 58 in that case. However, negative
leap seconds will never happen with the current definition of
the length of the SI second.) At other epochs the time to
generate the new time code is about 37 µs (the increase in the
computation time due to a rollover of the minute or the hour is
too small to measure). However, the measurement hardware
has control of the modem at that point (see below), and the
computer remains idle. If there are no active connections, then
nothing happens until the next second, when a new time code
is generated and the loop repeats. (A time code is generated
even if there are no active connections so that the time code on
the operator’s display will remain correct.)

If any serial port has an active connection, the computer
sends the new time code on that line starting at 250 ms into
the second. The time code consists of 51 characters (starting
with carriage return, line feed, the MJD value and ending
with the space just before the on-time marker). The slowest
supported telephone line speed is 1200 baud, so that the
time code takes no more than 425 ms to transmit, and the
transmission has finished no later than 675 ms after the start
of the second. (The modems that handle the connections are
configured to negotiate the telephone line speed automatically
when the call is first received. However, the communication
line between the computer and the external hardware runs at a
fixed speed of 9600 baud, so that neither the computer nor the
external measurement hardware need to know the telephone
line speed that was negotiated. As we will show below, the
auto-negotiation process is not optimum, and the system would
provide somewhat better accuracy if the line speed were also
fixed at 9600 baud.) The computer hands control of the serial
port over to the external measurement hardware at that point.
If nothing else happens, the computer takes back the control
of the line at 250 ms into the next second, and the process
repeats as long as the connection is active. The computer
will disconnect the caller after 40 time codes have been sent
(by turning off Data Terminal Ready, which forces the modem
to hang up and reset itself), unless the remote end hangs up first,
which is detected when the Carrier Detect status line from the
modem switches to FALSE. The system returns to an idle state
at that point and waits for the next call on that line.

7. The measurement hardware

If the computer has transmitted a time code on any serial line,
then it enables the corresponding measurement module for that
line starting at 700 ms after the start of the second. On the first
cycle of a connection (or on any cycle if no on-time marker
has been received on this line during the previous cycle), the
measurement module sends the default character ‘∗’ at 855 ms
after the start of the second (an advance of 145 ms with respect
to the next second) and it immediately starts listening for an
echo, since the echo might be received in the current second if
the round-trip delay is less than 145 ms.

If the module receives an on-time marker from the remote
end before 150 ms into the next second, it considers the echo

to be valid. It uses the elapsed time since it sent the on-time
marker as the round-trip delay and sets one-half of this value
as the advance for the on-time marker to be sent on the next
second. The module will regain control of the serial line in
the next second after the computer has sent the time code and
it will use the advance just computed to decide when to send
the on-time marker. The goal is to have equality between the
advance value and the time after the 1 Hz tick at which the
echo is received. After four successful measurement cycles,
the on-time marker is changed to ‘#’ to show that it is being
measured and is stable. It transmits the computed delay to the
computer through the serial port so that the computer can insert
the value into the next time code.

If the module does not receive an on-time marker within
150 ms, then the module returns a time-out status back to the
computer. It resets the on-time marker to ‘∗’ and sets the
advance to the default value for subsequent transmissions.
The operation continues until the computer stops enabling the
line, at which time the module resets its configuration to be
ready for the next call.

The advance used for every on-time marker is based on a
round-trip measurement made during the previous second, so
that there could be some advantage, in principle, in having the
client correct the time difference measured with any on-time
marker with the difference between the delay in the time
message that precedes it with the delay in the message that
follows it. This method turns out to be essentially equivalent
to averaging the time differences themselves, since both are
well characterized as white phase noise over the duration of a
telephone call. (The implicit requirement that the signal path
and the clocks be well behaved during the message exchange
is a common feature of all two-way protocols [4].)

Each module is synchronized from the same 1 Hz pulses
that synchronize the computer. In addition, the module uses
an external oscillator (5 MHz or 10 MHz) to drive the counters
that measure the delay. The module has no need for epoch
information.

The modules are implemented using commercial
programmable logic arrays. The receipt of the on-time marker
from the remote system and the transmission time of the
on-time marker to the remote user is controlled by a clock
that is synchronized to the external 1 Hz timing pulses. The
internal timing control has a resolution of 25 µs, which is an
improvement of about a factor of 10 relative to the previous
implementation of the system. The external reference signals
that are used to synchronize the hardware are derived from
the NIST atomic clock ensemble and have stabilities and
accuracies several orders of magnitude better than this value.

8. Performance testing

I tested the performance of the ACTS servers with the
configuration shown in figure 3. The modem dials the ACTS
server. When the connection is established, an external circuit,
connected to the output data line from the modem, monitors
the received characters. When an on-time marker is received
(either ‘∗’ or ‘#’), the circuit echoes the on-time marker back
through the transmit line of the modem. It also emits an
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Figure 5. The time errors on three consecutive calls spaced a few minutes apart measured by the test configuration shown in figure 3. The
ACTS server switches to measured delay mode and changes the on-time marker to a ‘#’ after the fourth time code. The reference for the
time interval counter is UTC(NIST), so these data are a measure of accuracy as well as stability.

Figure 6. The TDEV of one of the data sets from the previous figure.

output pulse. The time of the output pulse is compared with
a separate time reference by means of a standard time interval
counter. Since the time reference for the time interval counter
is UTC(NIST), these data are a measure of accuracy as well as
stability. The results are shown in figure 5, and the TDEVs of
these data (starting with the fifth point) are shown in figure 6.

The test results shown here used the same brand of modem
at both ends of the connection. The stability was about the same
when different brands of modems were used at each end of the
connection, but the accuracy varied from brand to brand. Some
brands of modems had offsets as large as 6 ms with respect to
the ‘standard’ device, which is simply the one that we chose

for the server. I also found some variation among different
modems of the same brand, although this variation was less
than ±0.8 ms maximum and might be attributed to fluctuations
in the telephone connection.

Although the ACTS service was never intended to be
a method for calibrating the frequency of a remote device,
these data show that it can perform this function in some
less-demanding applications. For example, if the user were
to average 10 consecutive time differences, then the data of
figure 6 would suggest that the variance of the average would
be about 100 µs. If the user made a second time comparison 2 h
later, the variance in the time measurements would translate
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Figure 7. The time errors of the ACTS system. The data are acquired by the test configuration shown in figure 3. The measurement is
repeated every hour for 12 days, and the results are shown in this figure.

Figure 8. The time deviation (TDEV) of the data shown in figure 6.

into an uncertainty in the frequency estimate of about
√

2 ×
10−4/7200 = 2 × 10−8, which is adequate for calibrating
many lower-end quartz-crystal oscillators. (In order to perform
such a calibration, the time differences between the 1 Hz
pulses from the device under test and the arrival times of
consecutive on-time markers would be measured, and the
time differences received during each telephone call would
be averaged. The details of this comparison would depend on
the device being calibrated; one way of doing this has been
described elsewhere [3].)

I repeated this test every hour for 12 days to estimate the
long-term stability of the ACTS system. The results of this test
are shown in figure 7, and the TDEVs of these data are shown
in figure 8. The data do not have a statistically significant offset

in time or in frequency, but there is a clear diurnal fluctuation,
which is probably, in part, due to the diurnal change in the load
on the telephone system.

Finally, I have tested the performance of the ACTS server
when the telephone line speed is varied from 1200 baud
to 19200 baud. The connection between the ACTS server
and the modem and between the remote modem and the test
hardware of figure 3 run at a constant speed of 9600 baud, and
the different speeds are accommodated automatically within
the modems. This accommodation is simplified by the fact
that the actual number of characters transmitted in either
direction is less than the baud rate even at the slowest supported
speed, so that questions of buffer overflow need not be
considered.
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Asymmetry, ACTS Servers
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Figure 9. The asymmetry (as defined in the text) in the channel delay measured as a function of the line speed of the telephone connection.
The test used the setup of figure 3 and varied the speed of the telephone connection. The connections between the modems and the hardware
at each end used a constant speed of 9600 baud. The three traces show the variation in the measured asymmetry over a number of calls
spaced a few minutes apart. The arrow shows the measurement when the line speed was the same as the speed used to connect the modems
to the external hardware.

I have characterized the time offsets of these data in
terms of the effective asymmetry of the communications line
(including the modems). The two-way algorithm that is the
basis of the ACTS protocol assumes that the inbound and
outbound delays are equal in magnitude. An asymmetry of
X% means that the outbound and inbound delays (viewed from
the point of view of the server) are 50 + X% and 50 − X%,
respectively. The resulting time error is XD/100, where D

is the round-trip delay. In the configuration that I used for
testing, an asymmetry of 1% resulted in a time offset of about
1.6 ms, so that the maximum asymmetry I measured at any
speed (about ±3%) would result in a time error of about 5 ms.
This asymmetry is probably mostly a function of the modems,
and its magnitude would probably be substantially independent
of the length of the telephone line. However, I have not verified
this.

The results of this measurement are shown in figure 9.
The three traces show the maximum, average and minimum
asymmetries measured by means of a series of telephone
connections spaced a few hours apart. The asymmetry is the
smallest when the telephone line speed is the same as the speed
used to connect the modems to the external hardware. These
results vary somewhat from one brand of modem to another,
but I have not conducted an exhaustive test of this variation.
However, in all of the brands that I have tested, the asymmetry
is smallest at 9600 baud.

9. The NIST time servers

The NIST time servers respond to requests for time in three
different formats: the TIME [5] protocol, the DAYTIME [6]
protocol and NTP, the Network Time Protocol [7]. Each
of the protocols uses the system clock as its time reference,

and the system clock is synchronized to UTC(NIST) by a
separate algorithm [8] called LOCKCLOCK. (Implementing
the synchronization of the local clock as a separate algorithm
rather than as part of the process that responds to requests
for time allows the synchronization process to be optimized
independently of the daemon processes that respond to
time requests.) The LOCKCLOCK algorithm uses periodic
telephone calls to the ACTS time service to synchronize the
local system clock, and the front-end of the algorithm, which
is the interface to the ACTS system, has been improved.
These improvements, combined with the new ACTS servers
described above, have resulted in a significant improvement in
the accuracy and stability of the time servers.

The interface between LOCKCLOCK and ACTS is
through a serial port on the time server, and that interface has
been improved in the following ways.

1. The echo of the on-time marker has been moved into the
interrupt service for the serial port, so that the on-time
marker is echoed back to the ACTS system with a delay
that is both much smaller and much more stable than in the
previous version of the software. As I discussed above,
the ACTS protocol assumes that this echo delay is 0.

2. The serial port driver now assigns a time tag to an
on-time marker and passes this value to the LOCKCLOCK
program. In the previous version, the association of the
time stamp and the receipt of the on-time marker was not
completed until the on-time marker character had been
passed to the application layer.

3. The delay between the receipt of an on-time marker by
the hardware and the time when this value is available to
one of the server processes has been shortened so that it
does not exceed 50 µs in normal operation and is generally
about 20 µs RMS. This reduces the portion of the channel
delay that is not part of the two-way measurement process.
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Figure 10. The performance of the system clock used as the reference for the time service, showing the performance with the old and new
ACTS interfaces. The flicker floor of the system is determined by the characteristics of the oscillator used in the system clock and has not
changed. The straight lines through the points have slopes of −1 and 0 to indicate the noise types that dominate in the different
measurement regimes [9]. The measurements based on the old ACTS system are taken from [8], figure 1.

The result of all of these improvements is shown in figure 10.
The upper trace is taken from figure 1 of the original
LOCKCLOCK description [8], which shows the free-running
stability of a system clock measured by means of periodic calls
to the ACTS server. The lower trace shows the measurements
made with the new system. The improvement is almost a factor
of 10 for all averaging times until the flicker floor (due to the
oscillator in the computer clock) is reached.

10. Adding an external oscillator

I have added an external rubidium-stabilized oscillator to some
of the time servers and I have interfaced the 1 Hz output
pulses from these devices to the RI (RING) interrupt line on a
dedicated serial port (as I described above for synchronizing
the ACTS system.) The frequency stability of this oscillator is
better than 5 × 10−11 for averaging times out to several hours,
so that its performance is several orders of magnitude better
than the internal quartz-crystal oscillator that drives the system
clock. The jitter in processing an interrupt on the RI line is
about 10 µs, and it is well characterized as white phase noise.
If the system clock is compared with the rubidium standard
every second, the system clock can be synchronized to within
1 µs, (which is the resolution with which it can be read) in
about 100 s, so that the short-term stability of the time of the
server is greatly improved.

Although the short-term stability of the server is improved,
the time accuracy of the server is not. The epochs of the ticks
from the rubidium standard must be calibrated by the use of
the ACTS system, and this calibration can be no better in long
term than the performance of ACTS itself. (See figure 6.) This
calibration is an ongoing process, since the frequency ageing
of a rubidium standard may be small, but it is not 0, and the

long-term stability of the servers is derived from the ACTS
system, which is directly traceable to UTC(NIST). The time
constant used to calibrate the output frequency of the rubidium
standard varies from one device to another, but is typically
about 1 month. Nevertheless, the rubidium standards provide
much better hold-over performance (that is, the stability of the
time server if the link to ACTS fails) than could be realized
by the use of the internal computer oscillator alone, and it has
been added to the server primarily for this reason.

11. Summary and conclusions

I have described improvements to servers that support the NIST
Automated Computer Time Service (ACTS). The stability
is improved by about a factor of 5 compared with the
previous version; the accuracy is also improved, although this
improvement will depend to some degree on the line speed and
the brand of modem that are used. These improvements will
be available to any application that uses the ACTS system.

The software that controls the serial-line interface on the
Internet time servers that links the servers to the ACTS system
has also been improved. The jitter in the delay between when
an on-time marker is received and when it is echoed has been
reduced by moving the echo function into the interrupt service
routine for the serial line. The algorithm that applies the time
stamp to the reception time has also been improved in a similar
fashion.

Taken together, these improvements have resulted in
an improvement of almost an order of magnitude in the
performance of the Internet time servers. This improvement
is most visible for users of the Internet time service whose
network connections have delays that are either small or very
symmetric, so that the time they receive from the server
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is not degraded by fluctuations in the network delay or in
its inbound–outbound asymmetry. This same limitation is
true for those servers that have external rubidium devices—
the increased stability may not be visible to users with
network connections that do not have stable, symmetric
delays.

The new servers are particularly well suited for use on local
area networks that may be isolated from the public Internet
for various reasons. Such networks often have a relatively
small number of routers and intermediate gateways, so that the
network delays are usually stable and symmetric. This type of
network configuration allows client systems to realize the full
potential of the servers, which provide stratum 1 performance
and traceability to UTC(NIST) without the need for an external
antenna.
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